Smokeless Tobacco Extract (STE)-Induced Toxicity in Mammalian Cells is Mediated by the Disruption of Cellular Microtubule Network: A Key Mechanism of Cytotoxicity
نویسندگان
چکیده
Smokeless tobacco usage is a growing public health problem worldwide. The molecular mechanism(s) underlying smokeless tobacco associated tissue damage remain largely unidentified. In the present study we have tried to explore the effects of aqueous extract of smokeless tobacco (STE) on tubulin-microtubule, the major cytoskeleton protein that maintains cells morphology and participates in cell division. Exposure to STE resulted in dose-dependent cytotoxicity in a variety of mammalian transformed cell lines such as human lung epithelial cells A549, human liver epithelial cells HepG2, and mouse squamous epithelial cells SCC7, [corrected] as well as non-tumorogenic human peripheral blood mononuclear cells PBMC. Cellular morphology of STE-treated cells was altered and the associated disruption of microtubule network indicates that STE targets tubulin-microtubule system in both cell lines. Furthermore it was also observed that STE-treatment resulted in the selective degradation of cellular tubulin, whereas actin remains unaltered. In vitro, polymerization of purified tubulin was inhibited by STE with the IC50 value∼150 µg/ml and this is associated with the loss of reactive cysteine residues of tubulin. Application of thiol-based antioxidant N-acetyl cysteine (NAC) significantly abrogates STE-mediated microtubule damage and associated cytotoxicity in both A549 and HepG2 cells. These results suggest that microtubule damage is one of the key mechanisms of STE-induced cytotoxity in mammalian cells.
منابع مشابه
Smokeless tobacco potentiates VIP-induced DNA synthesis and inactivates NEP 24.11 in oral keratinocytes.
The purpose of this study was to determine whether exposure of cultured chemically transformed hamster oral keratinocytes (HCPC-1) to an aqueous extract of smokeless tobacco (STE) potentiates DNA synthesis elicited by vasoactive intestinal peptide (VIP), an autocrine neuropeptide, and, if so, whether this response is associated with inactivation of neutral endopeptidase 24.11 (NEP 24. 11), an e...
متن کاملCabazitaxel antiproliferative mechanism of action in U87MG human glioblastoma cells: a promising cell-cycle phase-specific radiosensitizer
Introduction: One mechanism of cell cycle manipulation and mitotic catastrophe is arrest at G2/M phase of cell cycle. Cabazitaxel, a mitotic inhibitor agent, is a second-generation semisynthetic taxane. An expected anti-neoplastic effect of Cabazitaxel is cell cycle perturbation and alteration of microtubule dynamics. In contrast to other taxane compounds, Cabazitaxel is a poo...
متن کاملMechanism of oxidative stress involved in the toxicity of ZnO nanoparticles against eukaryotic cells
ZnO NPs (zinc oxide nanoparticles) has generated significant scientific interest as a novel antibacterial and anticancer agent. Since oxidative stress is a critical determinant of ZnO NPs-induced damage, it is necessary to characterize their underlying mode of action. Different structural and physicochemical properties of ZnO NPs such as particle surface, size, shape, crystal structure, chemica...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced by Dacarbazine and It’s Pyridine Derivative in Hepatocytes
Dacarbazine (DTIC) is a synthetic chemical antitumor agent which is used to treat malignant melanoma and Hodgkin’s disease. DTIC is a prodrug which is converted to an active form undergoing demethylation by liver enzymes. The active form prevents the progress of disease via alkylation of DNA strand. In the structure of this drug, the imidazole ring, a triazen chain and carboxamide group ex...
متن کاملPurified ACE attenuates smokeless tobacco-induced increase in macromolecular efflux from the oral mucosa.
The purpose of this study was to determine whether purified angiotensin I-converting enzyme (ACE) attenuates smokeless tobacco extract (STE)-induced increase in macromolecular efflux from the in situ oral mucosa. By using intravital microscopy, we found that suffusion of an aqueous extract of smokeless tobacco elicited significant concentration-dependent leaky site formation and increase in cle...
متن کامل